COMPUTER SCIENCE 322 (Winter Term 2004)
Compiler Construction
Prof. Levy

Problem Set 6

‘Due Monday 08 March‘

Reading Assignment: Dragon Book 4.7; 7.6

Written Assignment

Part I: Dragon Book exercise 4.33 (e), (f)

Part II: Recall our grammar for let expressions in ML, reproduced below with additional rules
for arithmetic and boolean expressions:!

expr — let-expr | arith-expr | bool-expr | (expr) | id | number | boolean
let-expr — let bindings in expr end

arith-expr — expr + expr | expr * expr

bool-expr — expr and expr | expr or expr

bindings — binding | binding; bindings

binding — val var = expr

with the usual assumptions about precedence (x > +, and > or), and the following regular defi-
nitions:

id — [A-Za-z| [A-Za-2z0-9]*
number — [0-9]"
boolean — true | false

Suppose someone makes the following suggestion: for this sort of simple programming language,
we can avoid writing a distinct type-checking component, by incorporating type information into
the grammar itself. For example, to prohibit mixing up booleans and numbers, we could move
number from the RHS of the expr rule to the RHS of the arith-expr, and move boolean to the
RHS of the bool-expr rule.

What is wrong with this argument? Specifically, what crucial element does the solution fail to
handle?

Turn your answers in to me on paper.

Lin reality, ML uses andalso instead of and, and orelse instead of or, but I like the simpler versions better.

Programming Assignment

This assignment has two purposes: (1) familiarizing yourself with building parsers using the
JFlex/CUP alternative to lex/yacc; (2) trying out different symbol table implementations to see
which are most efficient. To complete the assignment, perform the following steps:

1. Unzip the file ps6.zip

2. Write a CUP grammar called TinyML. cup, based on the grammar in the written assignment.
Your grammar should include the precedences mentioned above.

3. Complete the lexical rules for the JFlex scanner in TinyML.flex, using the appropriate
symbol methods for the return values (all three can have hollow methods to start):

4. Following the SymbolTable interface, implement three different versions of a symbol table:
(a) LinearSymbolTable, which uses a simple list (e.g., java.util.Vector) to store the

symbol table entries.

(b) PJWHashedSymbolTable, which uses a hashtable based on the PJW hash-function al-
gorithm in Fig. 7.35 on page 4.26 of the Dragon book. Hinl: use long instead of
unsigned (which Java doesn’t have), to avoid numerical overflow.

(c) SunHashedSymbolTable, which uses Sun’s java.util.Hashtable (one-liner’s for each
method you implement).

5. Use the gentest program provided to generate sample inputs for your parser. Running the
command

% java gentest N > outfile

will put a little ML program with N randomly-named variable declarations into the file
out file. You can then test your parser on this file by running the command

% java TinyML outfile. Compare the time taken by the three symbol table implementa-
tions, using enough different values of N.

6. Turn in the following items:

TinyML.cup
TinyML.flex

(a)
(b)
c¢) LinearSymbolTable. java
y J
(d) PJWHashedSymbolTable. java
(e) SunHashedSymbolTable. java
)

(

Either on paper or in a file, a graph or table showing your results from the last step.

