
Computer Science 112 - Fundamentals of Programming II
Lab Project 7
Due on Github 11:59pm Monday 4 November

Part I: Tree traversals

Implement and test the preorder, inorder, and postorder traversal methods we discussed in class.
Your preorder, inorder, and postorder methods should return a list of the data (node
contents) produced by visiting the tree in that order. For example:

 bst = BST()

 bst.add(2)
 bst.add(3)

bst.add(1)

print(bst.inorder())

[1, 2, 3]

Part II: Rebalance1 your tree

Your next task is to write a balanced() method for your BST class. This method will take a tree
(balanced or unbalanced) and return a balanced version of it. As we discussed, it’s easy to create an
unbalanced tree by adding nodes in descending order (3, 2, 1). Slides #33 and 34 of slide deck 25 show
the algorithm / pseudocode for rebalancing. Since we’re not mutating the original tree as this
algorithm does, we don’t have to clear the tree; we just create a new tree and add to it instead.

Part III: Heap Heap Hooray!

Create a file heap.py defining a Heap class. As with our other container classes, you’ll want an add
method and a __contains__ method as the minimal API for this class, plus a __str__method to
aid in debugging. Feel free to copy/paste from the lecture slides (slide deck 28) to get your heap
working. To keep things simple, your __str__method can just return a string representation of the
heap’s array. (I tried having __str__ return a string showing the hierarchy like a BT, but I didn’t get
too far and gave up: maybe an extra-credit opportunity!)

Part IV: Priority Queue Redux

As we discussed, the efficient way to implement a priority queue is with a heap. To get started on your
new priority queue, add a pop method to your Heap class, using the code from the lecture notes.

1Technically, this should be called balancing the tree, not rebalancing, since we have to reason to assume the tree was
balanced already. That’s why I chose the name balanced for the method you’ll write. For a similar non-logical use of
word prefixes in ordinary language, see re-entry vehicle, irregardless, etc.

Next we’ll want a new PriorityQueue class to compare with the one we built in Lab 5 a few weeks
ago. What I did was to copy the priorityqueue.py file from that lab into this lab and rename it to
priorityqueue2.py, and replace the LinkedList code with code from my new Heap class. Doing
that should involve simply replacing your complicated PriorityQueue code with one-line calls to
the Heap methods; for example:

 def push(self, datum):

 self.heap.add(datum)

After running some simple tests as usual, you’re ready to have your new and old priority queue classes
go head-to-head in an efficiency contest. (Don’t forget to copy your priorityqueue.py and its
supporting linkedlist.py to this lab folder to enable the comparison.) Create a new file pqtest.py to run
this comparison. By making good use of the import statement, you can refer to your two queue
implementations elegantly in your main code:

from priorityqueue import PriorityQueue as PQ1
from priorityqueue2 import PriorityQueue as PQ2

As you did last week, code up a little timing test to show the difference in cost associated with
inserting an element into each of these queue implementations, making sure to put a helpful print
statement before any code that you know is going to take a nontrivial amount of time to run.

