
Computer Science 112 - Fundamentals of Programming II
Lab Project 8
Due on Github 11:59pm Monday 11 November

Implement the BucketSort algorithm we described in class. Write bucketsort.py containing (for now)
a single function bucketSort (no class definition necessary), which will sort (mutate) the integer
list you pass to it.

Your LinkedList class will be helpful for implementing the buckets. Instead of using the code from
the slides, I found it easier to code up bucketSort myself from first principles, avoiding the Arrays
class and other complications from the lecture slides (Lecture 29, Slide 18). Instead, I used an ordinary
Python list for my array and followed the general algorithm in the slide.

Once you’ve tested your bucketSort function on some integer lists you build by hand (make sure
to include some duplicates!), it’s time to try it out on a list of random integers. To help with these,
write a function randints(n) that accepts a numbers n and returns a list of n random integers in the
interval [0, n-1]. Test your bucketSort again on a small list created by using this function.

Finally, as you may have expected, it’s time to run some speed contests! Since the claim is that
BucketSort can be faster than QuickSort, we’ll compare these two sorting algorithms. Copying your
sorts.py, counter.py, and tools.py files from Lab #3 will give you access to QuickSort, by adding
from sorts import quickSort at the top of bucketsort.py. To compare the two sorting
functions, use your randints function to generate a large list of random numbers. Then make a
copy of this list, so you can give one copy to quicksort and the other to bucketSort. In
reporting the time values, I avoided using int() to convert the elapsed time to a whole number of
seconds; otherwise, the differences were too small to notice.

As I discovered through some googling, Quicksort is the best choice in general, but BucketSort can win
when you have a small list. To figure out what size list counts as “small”, run some experiments with
different values of n. For example, you could start with n = 1000 and double n until you seem some
interesting results.

To finish up, summarize your results in a plot using Excel (or Numbers on a Mac, or whatever
spreadsheet program you like). Your plot should show time in seconds against list size n, with a cross-
over for some value of n. Include your plot as a PDF in your submission. Another extra-credit
opportunity would be to have your bucketsort.py program create a .CSV file that you can open in a
spreadsheet program, so you don’t have to copy the numbers into the spreadsheet by hand.

