
Computer Science 210 –Computer Organization 
 

Homework Exercise 2 

Due on github 11:59 PM Monday 24 January 

     

 

Download project2.zip from the link on the on the course website (below the link you clicked to 

view these insructions)..  This folder contains two tester programs for this week’s exercises. 

Copy your binary.py from the previous assignment file to this folder. 

 

You should first clean up your binary/integer conversion functions from last week and test them 

by running testbinary1.py.  

  

You should then add the functions in the following exercises, suitably documented, to your file 

named binary.py, and test them with the tester program testbinary2.py.  

 

In these exercises, you will extend your library of number system functions to include functions 

to convert from floating-point numbers in base 10 to IEEE single precision format in binary.  

You should develop them bottom-up, in the following order: 

 

1. Define a Python function unsignedFractionToBinary that expects two arguments, 

an unsigned floating-point number (a Python float that is less than 1) and a maximum 

number of bits.  This function returns the corresponding string of binary digits (just the 

digits, no decimal point).  Note that the length of the string returned must be less than or 

equal to the maximum number of bits.  Test the function with the example numbers you 

can find in the book and with 25 bits maximum. 

 

2. Define a Python function unsignedFloatToBinary that expects two arguments, an 

unsigned floating-point number (a Python float that can be greater than or equal to 1) 

and a maximum number of bits for the fractional part.  This function returns the 

corresponding string of binary digits.  The returned bit string should include the binary 

number’s whole part, a decimal point, and the fractional part.  Test as in Exercise 1. 

 

3. Define a Python function normalize that expects one argument, a bit string of the form 

returned by unsignedFloatToBinary.  The normalize function returns the 

equivalent bit string in normalized form.  Examples of returned values are the string 

“1.101E-3” from the bit string “0.001101” and the string “1.01100E4” from the bit string 

“10110.0”.  Note the embedded exponent, whose value is represented in base 10 digits. 

 

4. Define a Python function decimalToSinglePrecision that expects one argument, a 

signed floating-point number (a Python float).  This function returns a string of binary 

digits representing that number in IEEE single precision format.  You should make good 

use of the other functions in your library for this one.  Above all, don’t reinvent the 

wheel!  As before, consult the class slides for test data. 


