
Analogical Mapping with Vector Symbolic Architectures

1

A DISTRIBUTED BASIS FOR ANALOGICAL MAPPING

Ross W. Gayler
r.gayler@gmail.com

School of Communication, Arts and Critical Enquiry
La Trobe University

Victoria 3086 Australia

Simon D. Levy
levys@wlu.edu

Department of Computer Science
Washington and Lee University

Lexington, Virginia USA

ABSTRACT

We are concerned with the practical fea-
sibility of the neural basis of analogical map-
ping. All existing connectionist models of ana-
logical mapping rely to some degree on local-
ist representation (each concept or relation is
represented by a dedicated unit/neuron). These
localist solutions are implausible because they
need too many units for human-level compe-
tence or require the dynamic re-wiring of net-
works on a sub-second time-scale.

Analogical mapping can be formalised as
finding an approximate isomorphism between
graphs representing the source and target con-
ceptual structures. Connectionist models of
analogical mapping implement continuous
heuristic processes for finding graph isomor-
phisms. We present a novel connectionist
mechanism for finding graph isomorphisms
that relies on distributed, high-dimensional
representations of structure and mappings.
Consequently, it does not suffer from the prob-
lems of the number of units scaling combinato-
rially with the number of concepts or requiring
dynamic network re-wiring.

GRAPH ISOMORPHISM

Researchers tend to divide the process of
analogy into three stages: retrieval (finding an
appropriate source situation), mapping (identi-
fying the corresponding elements of the source
and target situations), and application. Our

concern is with the mapping stage, which is
essentially about structural correspondence. If
the source and target situations are formally
represented as graphs, the structural corre-
spondence between them can be described as
approximate graph isomorphism. Any mecha-
nism for finding graph isomorphisms is, by
definition, a mechanism for finding structural
correspondence and a possible mechanism for
implementing analogical mapping. We are
concerned with the formal underpinning of
analogical mapping (independently of whether
any particular researcher chooses to describe
their specific model in these terms).

It might be supposed that representing
situations as graphs is unnecessarily restrictive.
However, anything that can be formalised can
be represented by a graph. Category theory,
which is effectively a theory of structure and
graphs, is an alternative to set theory as a
foundation for mathematics (Marquis, 2009),
so anything that can be mathematically repre-
sented can be represented as a graph.

It might also be supposed that by working
solely with graph isomorphism we favour
structural correspondence to the exclusion of
other factors that are known to influence ana-
logical mapping, such as semantic similarity
and pragmatics. However, as any formal struc-
ture can be represented by graphs it follows
that semantics and pragmatics can also be en-
coded as graphs. For example, some models of
analogical mapping are based on labelled
graphs with the process being sensitive to label

Ross W. Gayler and Simon D. Levy

2

similarity. However, any label value can be
encoded as a graph and label similarity cap-
tured by the degree of approximate isomor-
phism. Further, the mathematics of graph iso-
morphism has been extended to include attrib-
ute similarity and is commonly used this way
in computer vision and pattern recognition
(Bomze, Budinich, Pardalos & Pelillo, 1999).

The extent to which analogical mapping
based on graph isomorphism, is sensitive to
different types of information depends on what
information is encoded into the graphs. Our
current research is concerned only with the
practical feasibility of connectionist implemen-
tations of graph isomorphism. The question of
what information is encoded in the graphs is
separable. Consequently, we are not concerned
with modelling the psychological properties of
analogical mapping as such questions belong
to a completely different level of inquiry.

CONNECTIONIST IMPLEMENTATIONS

It is possible to model analogical map-
ping as a purely algorithmic process. However,
we are concerned with physiological plausibil-
ity and consequently limit our attention to
connectionist models of analogical mapping
such as ACME (Holyoak & Thagard, 1989),
AMBR (Kokinov, 1988), DRAMA (Eliasmith
& Thagard, 2001), and LISA (Hummel &
Holyoak, 1997). These models vary in their
theoretical emphases and the details of their
connectionist implementations, but they all
share a problem in the scalability of the repre-
sentation or construction of the connectionist
mapping network. We contend that this is a
consequence of using localist connectionist
representations or processes. In essence, they
either have to allow in advance for all combi-
natorial possibilities, which requires too many
units (Stewart & Eliasmith, in press), or they
have to construct the required network for each
new mapping task in a fraction of a second.

Problems with localist implementation

Rather than review all the major connec-
tionist models of analogical mapping, we will

use ACME and DRAMA to illustrate the prob-
lem with localist representation. Localist and
distributed connectionist models have often
been compared in terms of properties such as
neural plausibility and robustness. Here, we
are concerned only with a single issue: dy-
namic re-wiring (i.e., the need for connections
to be made between neurons as a function of
the source and target situations to be mapped).

ACME constructs a localist network to
represent possible mappings between the
source and target structures. The network is a
function of the source and target representa-
tions, and a new network has to be constructed
for every source and target pair. A localist unit
is constructed to represent each possible map-
ping between a source vertex and target vertex.
The activation of each unit indicates the degree
of support for the corresponding vertex map-
ping being part of the overall mapping be-
tween the source and target. The connections
between the network units encode compatibil-
ity between the corresponding vertex map-
pings. These connections are a function of the
source and target representations and con-
structed anew for each problem. Compatible
vertex mappings are linked by excitatory con-
nections so that support for plausibility of one
vertex mapping transmits support to compati-
ble mappings. Similarly, inhibitory connec-
tions are used to connect the units representing
incompatible mappings. The network imple-
ments a relaxation labelling that finds a com-
patible set of mappings. The operation of the
mapping network is neurally plausible, but the
process of its construction is not.

The inputs to ACME are symbolic repre-
sentations of the source and target structures.
The mapping network is constructed by a
symbolic process that traverses the source and
target structures. The time complexity of the
traversal will be a function of the size of the
structures to be mapped. Given that we believe
analogical mapping is a continually used core
part of cognition and that all cognitive infor-
mation is encoded as (large) graph structures,
we strongly prefer mapping network setup to
require approximately constant time independ-
ent of the structures to be mapped.

Analogical Mapping with Vector Symbolic Architectures

3

DRAMA is a variant of ACME with dis-
tributed source and target representations.
However, it appears that the process of con-
structing the distributed representation of the
mapping network is functionally localist, re-
quiring a decomposition and sequential tra-
versal of the source and target structures.

Ideally, the connectionist mapping net-
work should have a fixed neural architecture.
The units and their connections should be
fixed in advance and not need to be re-wired in
response to the source and target representa-
tions. The structure of the current mapping
task should be encoded entirely in activations
generated on the fixed neural architecture by
the source and target representations and the
set-up process should be holistic rather than
requiring decomposition of the source and tar-
get representations. Our research aims to
achieve this by using distributed representation
and processing from the VSA family of con-
nectionist models.

We proceed by introducing replicator
equations; a localist heuristic for finding graph
isomorphisms. Then we introduce Vector
Symbolic Architectures (VSA), a family of
distributed connectionist mechanisms for the
representation and manipulation of structured
information. Our novel contribution is to im-
plement replicator equations in a completely
distributed fashion based on VSA. We con-
clude with a proof-of-concept demonstration
of a distributed re-implementation of the prin-
cipal example from the seminal paper on graph
isomorphism via replicator equations.

REPLICATOR EQUATIONS

The approach we are pursuing for graph
isomorphism is based on the work of Pelillo
(1999), who casts subgraph isomorphism as
the problem of finding a maximal clique (set of
mutually adjacent vertices) in the association
graph derived from the two graphs to be
mapped. Given a graph G of size N with an

NN  adjacency matrix ijaA  and a graph

G  of size N with an NN  adjacency ma-

trix hkaA  , their association graph G of

size 2N can be represented by an 22 NN 

adjacency matrix),(jkih aaA  whose edges

encode pairs of edges from G and G  :





 


otherwise0

andif)(1 2

,

khjiaa
a hkij

jkih (1)

The elements of A are 1 if the corre-
sponding edges in G and G  have the same
state of existence and 0 if the corresponding
edges have different states of existence. De-
fined this way, the edges of the association
graph G provide evidence about potential

mappings between the vertices of G and G 

based on whether the corresponding edges and
non-edges are consistent. The presence of an
edge between two vertices in one graph and an
edge between two vertices in the other graph
supports a possible mapping between the
members of each pair of vertices (as does the
absence of such an edge in both graphs).

By treating the graph isomorphism prob-
lem as a maximal-clique-finding problem, Pe-
lillo exploits an important result in graph the-
ory. Consider a graph G with adjacency ma-
trix A , a subset C of vertices of G , and a

characteristic vector Cx (indicating member-
ship of the subset C) defined as



 


otherwise0

if1 CiC
xC

i (2)

where C is the cardinality of C . It turns out

that C is a maximum clique of G if and only

if Cx maximizes the function Axxxf T)(,

where Tx is the transpose of x , Nx  ,

1
1

 

N

i ix , and 0 ixi .

Starting at some initial condition (typi-
cally the barycenter, Nxi 1 corresponding

to all ix being equally supported as part of the

solution), x can be obtained through iterative
application of the following equation:

 


N

j jj

ii
i

ttx

ttx
tx

1
)()(

)()(
)1(




(3)

Ross W. Gayler and Simon D. Levy

4

where

 


N

j jiji txwt
1

)()( (4)

and W is a matrix of weights, ijw , typically

just the adjacency matrix A of the association
graph or a linear function of A . The x vector
can thus be considered to represent the state of
the system’s belief about the vertex mappings
at a given time, with Equations 3 and 4 repre-
senting a dynamical system parameterized by

the weights in W . i can be interpreted as the

evidence for ix obtained from all the compati-

ble jx where the compatibility is encoded by

ijw . The denominator in Equation 3 is a nor-

malizing factor ensuring that 1
1

 

N

i ix .

Pelillo borrows Equations 3 and 4 from
the literature on evolutionary game theory in
which i is the overall payoff associated with

playing strategy i , and ijw is the payoff asso-

ciated with playing strategy i against strategy
j . In the context of the maximum-clique prob-

lem, these replicator equations can be used to
derive a vector x (vertex mappings) that
maximizes the “payoff” (edge consistency)
encoded in the adjacency matrix. Vertex map-
pings correspond to strategies, and as Equation
3 is iterated, mappings with higher fitness
(consistency of mappings) come to dominate
ones with lower fitness.

Figure 1. A simple graph isomorphism problem.

Consider the simple graphs in Figure 1,
used as the principal example by Pelillo (1999)
and which we will later re-implement in a dis-
tributed fashion. The maximal isomorphism
between these two graphs is {A=P, B=Q, C=R,
D=S} or {A=P, B=Q, C=S, D=R}. Table 1

shows the first and last rows of the adjacency
matrix for the association graph of these
graphs, generated using Equation 1. Looking at
the first row of the table, we see that the map-
ping A=P is consistent with the mappings
B=Q, B=R, B=S, C=Q, C=R, C=S, D=Q,
D=R, and D=S, but not with A=Q, A=R, A=S,
B=P, etc.

AP AQ AR AS BP BQ BR BS CP CQ CR CS DP DQ DR DS

AP 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1

… … … … … … … … … … … … … … … … …

DS 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0

Table 1. Fragment of adjacency matrix for Fig. 1.

Initially, all values in the state vector x
are set to 0.0625 (1/16). Repeated application
of Equations 3 and 4 produces a final state
vector that encodes the two maximal isomor-
phisms, with 0.3 in the positions for A=P and
B=Q, 0.1 in the positions for C=R, C=S, D=R,
and D=S, and 0 in the others. The conflicting
mappings for C, D, R, and S correspond to a
saddle point in the dynamics of the replicator
equations, created by the symmetry in the
graphs. Adding a small amount of noise to the
state breaks this symmetry, producing a final
state vector with values of 0.25 for the optimal
mappings A=P, B=Q, and C=R, D=S or C=S,
D=R, and zero elsewhere. The top graph of
Figure 4 shows the time course of the settling
process from our implementation of Pelillo’s
localist algorithm.

This example is trivially small. However,
the same approach has been successfully ap-
plied to graphs with more than 65,000 vertices
(Pelillo & Torsello, 2006). It has also been
extended to match hierarchical, attributed
structures for computer vision problems (Pe-
lillo, Siddiqi & Zucker 1999). Thus, we are
confident that replicator equations are a rea-
sonable candidate mechanism for the structure
matching at the heart of analogical mapping.

DISTRIBUTED IMPLEMENTATION

The replicator equation mechanism can
be easily implemented as a localist connection-
ist circuit. This is qualitatively very similar to

A B

C

D
P Q

S

R

Analogical Mapping with Vector Symbolic Architectures

5

ACME and suffers the same problems due to
the localist representation. In this section we
present a distributed connectionist scheme for
representing edges, vertices, and mappings that
does not suffer from these problems.

Vector Symbolic Architecture

Vector Symbolic Architecture is a name
that we coined (Gayler, 2003) to describe a
class of connectionist models that use high-
dimensional vectors (typically around 10,000
dimensions) of low-precision numbers to en-
code structured information as distributed rep-
resentations. VSA can represent complex enti-
ties such as trees and graphs as vectors. Every
such entity, no matter how simple or complex,
is represented by a pattern of activation dis-
tributed over all the elements of the vector.
This general class of architectures traces its
origins to the tensor product work of Smolen-
sky (1990), but avoids the exponential growth
in dimensionality of tensor products. VSAs
employ three types of vector operator: a multi-
plication-like operator, an addition-like opera-
tor, and a permutation-like operator. The mul-
tiplication operator is used to associate or bind
vectors. The addition operator is used to su-
perpose vectors or add them to a set. The per-
mutation operator is used to quote or protect
vectors from the other operations.

The use of hyperdimensional vectors to
represent symbols and their combinations pro-
vides a number of mathematically desirable
and biologically realistic features (Kanerva,
2009). A hyperdimensional vector space con-
tains as many mutually orthogonal vectors as
there are dimensions and exponentially many
almost-orthogonal vectors (Hecht-Nielsen,
1994), thereby supporting the representation of
astronomically large numbers of distinct items.
Such representations are also highly robust to
noise. Approximately 30% of the values in a
vector can be randomly changed before it be-
comes more similar to another meaningful
(previously-defined) vector than to its original
form. It is also possible to implement such
vectors in a spiking neuron model (Eliasmith,
2005).

The main difference among types of
VSAs is in the type of numbers used as vector
elements and the related choice of multiplica-
tion-like operation. Holographic Reduced Rep-
resentations (Plate, 2003) use real numbers and
circular convolution. Kanerva’s (1996) Binary
Spatter Codes (BSC) use Boolean values and
elementwise exclusive-or. Gayler’s (1998)
Multiply, Add, Permute coding (MAP) uses

values from }1,1{  and elementwise multi-

plication. A useful feature of BSC and MAP is
that each vector is its own multiplicative in-
verse. Multiplying any vector by itself elemen-
twise yields the identity vector. As in ordinary
algebra, multiplication and addition are asso-
ciative and commutative, and multiplication
distributes over addition.

We use MAP in the work described here.
As an illustration of how VSA can be used to
represent graph structure, consider again the
optimal mapping {A=P, B=Q, C=R, D=S} for
the graphs in Figure 1. We represent this set of
mappings as the vector

SDRCQBPA  (5)

where A , B , C , ... are arbitrarily chosen

(random) vectors over }1,1{  and  and 

represent elementwise vector multiplication
and addition respectively. For any mapped
vertex pair X=Y, the representation Y of ver-
tex Y can be retrieved by multiplying the map-
ping vector)*(YX by X , and vice-

versa. The resulting vector will contain the
representation of Y plus a set of representa-
tions not corresponding to any vertex, which
can be treated as noise; e.g.:

noisePSDARCAQBAP

SDARCAQBAPAA

SDRCQBPAA





)(

(6)

The noise can be removed from the re-
trieved vector by passing it through a “cleanup
memory” that stores only the meaningful vec-
tors),,,,,,,(SRQPDCBA . Cleanup memory

can be implemented in a biologically plausible
way as a Hopfield network that associates each
meaningful vector to itself (a variant of Heb-
bian learning). Such networks can reconstruct

Ross W. Gayler and Simon D. Levy

6

the original form of a vector from a highly
degraded exemplar, via self-reinforcing feed-
back dynamics.

Note that although the vectors depicted in
Equations 5 and 6 appear complex they are just
vector values like any other. From the point of
view of the implementing hardware all vectors
are of equal computational complexity. This
has profound implications for the resource
requirements of VSA-based systems. For ex-
ample, the computational cost of labelling a
graph vertex with a simple attribute or a com-
plex structure is exactly the same.

Our Model

Our goal is to build a distributed imple-
mentation of the replicator Equations 3 and 4
by representing the problem as distributed pat-
terns of fixed, high dimension in VSA such
that the distributed system has the same dy-
namics as the localist formulation. As in the
localist version, we need a representation x of
the evolving state of the system’s belief about
the vertex mappings, and a representation w
of the adjacencies in the association graph.

In the VSA representation of a graph we
represent vertices by random hyperdimen-
sional vectors, edges by products of the vectors
representing the vertices, and mappings by
products of the mapped entities. It is natural to
represent the set of vertices as the sum of the
vectors representing the vertices. The product
of the vertex sets of the two graphs is then
identical to the sum of the possible mappings
of vertices (Equation 7). That is, the initial
value of x can be calculated holistically from
the representations of the graphs using only
one product operation that does not require
decomposition of the vertex set into compo-
nent vertices. For the graphs in Figure 1:

SDRDQBPBQAPA

SRQPDCBAx







)()(
(7)

For VSA it is natural to represent the set
of edges of a graph as the sum of the products
of the vertices connected by each edge. The
product of the edge sets of the two graphs is
identical to a sum of products of four vertices.

This encodes information about mappings of
edges, or equivalently, about compatibility of
vertex mappings. That is, one holistic product
operation applied to the edge sets is able to
encode all the possible edge mappings in con-
stant time no matter how many edges there are.

The reader may have noticed that the de-
scription above refers only to edges, whereas
Pelillo’s association graph also encodes infor-
mation about the mapping of non-edges in the
two graphs. We believe the explicit representa-
tion of non-edges is cognitively implausible.
However, Pelillo was not concerned with cog-
nitive plausibility. Since our aim here is to
reproduce his work, we include non-edges in
Equation 8. The distributed vector w func-
tions as the localist association matrix W . For
the graphs in Figure 1:

SRDCSRCARPCAQPCA

SRBARPBAQPBA

SQDBRQDBSQCBRQCB

SRSPRPQPDCDACABA

SQRQDBCBw















)()(

)()(

(8)

The terms of this sum correspond to the
nonzero elements of Table 1 (allowing for the
symmetries due to commutativity). With x
and w set up this way, we can compute the
payoff vector  as the product of x and w .
As in the localist formulation (Equation 4), this
product causes consistent mappings to rein-
force each other. Evidence is propagated from
each vertex mapping to consistent vertex map-
pings via the edge compatibility information
encoded in w . (The terms of Equation 9 have
been rearranged to highlight this cancellation.)











RBPQBPRBQB

RBPAQBPAQAPA

wx

)()(


(9)

Implementing the update of x (Equation
3) is more challenging for the VSA formula-
tion. As in the localist version, the idea is for
corresponding vertex mappings in x and  to
reinforce each other multiplicatively, in a kind
of multiset intersection (denoted here as ): if

)(321 RBkQBkPAkx  and)(54 QBkPAk 

then x equals)(5241 QBkkPAkk  , for

Analogical Mapping with Vector Symbolic Architectures

7

non-negative weights 1k , 2k , 3k , 4k , and 5k .

Because of the self-cancellation property of the
MAP architecture, simple elementwise multi-
plication of x and  will not work. We could

extract the ik by iterating through each of the

pairwise mappings),,,(SDQAPA   and

dividing x and  elementwise by each map-
ping, but this is the kind of functionally local-
ist approach we argue is neurally implausible.
Instead, we need a holistic distributed intersec-
tion operator. This can be construed as a spe-
cial case of lateral inhibition, a winner-takes-
all competition, which has traditionally been
considered a localist operation (Page, 2000;
Levy & Gayler, in press).

Figure 2. A neural circuit for vector intersection.

To implement this intersection operator
in a holistic, distributed manner we exploit the
third component of the MAP architecture:
permutation. Our solution, shown in Figure 2,
works as follows: 1: and 2: are registers (vec-
tors of units) loaded with the vectors represent-
ing the multisets to be intersected. P1() com-
putes some arbitrary, fixed permutation of the
vector in 1:, and P2() computes a different
fixed permutation of the vector in 2:. Register
3: contains the product of these permuted vec-
tors. Register 4: is a memory (a constant vec-
tor value) pre-loaded with each of the possible
multiset elements transformed by multiplying
it with both permutations of itself. That is,

)()(:4 21 1 ii
M

i i XPXPX  
, where M is

the number of items in the memory vector (4:).
To implement the replicator equations the
clean-up memory 4: must be loaded with a
pattern based on the sum of all the possible
vertex mappings (similar to the initial value of
the mapping vector x).

To see how this circuit implements inter-
section, consider the simple case of a system
with three meaningful vectors X , Y , and Z

where we want to compute the intersection of

Xk1 with)(32 YkXk  . The first vector is

loaded into register 1:, the second into 2:, and
the sum)()()()()()(212121 ZPZPZYPYPYXPXPX 

is loaded into 4:. After passing the register
contents through their respective permutations
and multiplying the results, register 3: will
contain

)(2)(131)(2)(121

)32(2)1(1

YPXPkkXPXPkk

YkXkPXkP





Multiplying registers 3: and 4: together will
then result in the desired intersection (relevant
terms in bold) plus noise, which can be re-
moved by standard cleanup techniques:

noise

ZPZPZYPYPY

YPXPkk







X2k1k

(X)2P(X)1PX

(X)2P(X)1P2k1k

))(2)(1)(2)(1(

))(2)(131(

In brief, the circuit in Figure 2 works by
guaranteeing that the permutations will cancel

only for those terms iX that are present in

both input registers, with other terms being
rendered as noise.

In order to improve noise-reduction it is
necessary to sum over several such intersection
circuits, each based on different permutations.
This sum over permutations has a natural in-
terpretation in terms of sigma–pi units (Ru-
melhart, Hinton & McClelland, 1986), where
each unit calculates the sum of many products
of a few inputs from units in the prior layer.
The apparent complexity of Figure 2 results
from drawing it for ease of explanation rather
than correspondence to implementation. The
intersection network of Figure 2 could be im-
plemented as a single layer of sigma–pi units.

COMPARING THE APPROACHES

Figure 3 shows the replicator equation
approach to graph isomorphism as a recurrent
neural circuit. Common to Pelillo’s approach
and ours is the initialization of a weight vector
w with evidence of compatibility of edges and
non-edges from the association graph, as well
as the computation of the payoff vector 

2: P2()

1: P1()

4:

3: 5: 

Ross W. Gayler and Simon D. Levy

8

from multiplication () of x and w , the
computation of the intersection of x and 
(), and the normalization of x (/). The
VSA formulation additionally requires a
cleanup memory (c) and intersection-cleanup

memory (c), each initialized to a constant

value.

Figure 3. A neural circuit for graph isomorphism.

Figure 3 also shows the commonality of
the localist and VSA approaches, with the
VSA-only components depicted in dashed
lines. Note that the architecture is completely
fixed and the specifics of the mapping problem
to be solved are represented entirely in the
patterns of activation loaded into the circuit.
Likewise, the circuit does not make any deci-
sions based on the contents of the vectors be-
ing manipulated. The product and intersection
operators are applied to whatever vectors are
present on their inputs and the circuit settles to
a stable state representing the solution.

To demonstrate the viability of our ap-
proach, we used this circuit with a 10,000-
dimensional VSA to deduce isomorphisms for
the graphs in Figure 1. This example was cho-
sen to allow direct comparison with Pelillo’s
results. Although it was not intended as an
example of analogical mapping, it does di-
rectly address the underlying mechanism of
graph isomorphism. Memory and processor
limitations made it impractical to implement
the main cleanup memory as a Hopfield net
(108 weights), so we simulated the Hopfield
net with a table that stored the meaningful vec-
tors and returned the one closest to the noisy
version. To implement the intersection circuit
from Figure 2 we summed over 50 replicates
of that circuit, differing only in their arbitrary
permutations. The updated mapping vector
was passed back through the circuit until the

Euclidean distance between tx and 1tx dif-

fered by less than 0.001. At each iteration we
computed the cosine of x with each item in
cleanup memory, in order to compare our VSA
implementation with the localist version; how-
ever, nothing in our implementation depended
on this functionally localist computation.

Figure 4. Convergence of localist (top) and VSA
(bottom) implementation.

Figure 4 compares the results of Pelillo’s
localist approach to ours, for the graph iso-
morphism problem shown in Figure 1. Time
(iterations) t is plotted on the abscissa, and the
corresponding values in the mapping vector on
the ordinate. For the localist version we added
a small amount of Gaussian noise to the state
vector on the first iteration in order to keep it
from getting stuck on a saddle point; the VSA
version, which starts with a noisy mapping
vector, does not suffer from this problem. In
both versions one set of consistent vertex
mappings (shown in marked lines) comes to
dominate the other, inconsistent mappings

cΛ

c

w * Λ cleanup 

xt

xt+1πt

Analogical Mapping with Vector Symbolic Architectures

9

(shown in solid lines) in less than 100 itera-
tions.
The obvious difference between the VSA and
localist versions is that the localist version
settles into a “clean” state corresponding to the
characteristic vector in Equation 2, with four
values equal to 0.25 and the others equal to
zero; whereas in the VSA version the final
state approximates this distribution. (The small
negative values are an artifact of using the co-
sine as a metric for comparison.)

CONCLUSIONS AND FUTURE WORK

The work presented here has demon-
strated a proof-of-concept that a distributed
representation (Vector Symbolic Architecture)
can be applied successfully to a problem
(graph isomorphism) that until now has been
considered the purview of localist modelling.
The results achieved with VSA are qualita-
tively similar to those with the localist formu-
lation. In the process, we have provided an
example of how a distributed representation
can implement an operation reminiscent of
lateral inhibition, winner-takes-all competition,
which likewise has been considered to be a
localist operation. The ability to model compe-
tition among neurally encoded structures and
relations, not just individual items or concepts,
points to promising new directions for cogni-
tive modelling in general.

The next steps in this research will be to
demonstrate the technique on larger graphs and
investigate how performance degrades as the
graph size exceeds the representational capac-
ity set by the vector dimensionality. We will
also investigate the performance of the system
in finding subgraph isomorphisms.

Graph isomorphism by itself does not
constitute a psychologically realistic analogical
mapping system. There are many related prob-
lems to be investigated in that broader context.
The question of what conceptual information is
encoded in the graphs, and how, is foremost. It
also seems reasonable to expect constraints on
the graphs encoding cognitive structures (e.g.
constraints on the maximum and minimum
numbers of edges from each vertex). It may be

possible to exploit such constraints to improve
some aspects of the mapping circuit. For ex-
ample, it may be possible to avoid the cogni-
tively implausible use of non-edges as evi-
dence for mappings.

Another area we intend to investigate is
the requirement for population of the clean-up
memories. In this system the clean-up memo-
ries are populated from representations of the
source and target graphs. This is not unreason-
able if retrieval is completely separate from
mapping. However, we wish to explore the
possibility of intertwining retrieval and map-
ping. For this to be feasible we would need to
reconfigure the mapping so that cleanup mem-
ory can be populated with items that have been
previously encountered rather than items cor-
responding to potential mappings.

We expect this approach to provide fertile
lines of research for many years to come.

SOFTWARE DOWNLOAD

MATLAB code implementing the algo-
rithm in (Pelillo, 1999) and our VSA version
can be downloaded from tinyurl.com/gidemo

ACKNOWLEDGMENTS

We thank Pentti Kanerva, Tony Plate,
and Roger Wales for many useful suggestions.

REFERENCES

Bomze, I. M., Budinich, M., Pardalos, P. M.,
& Pelillo, M. (1999) The Maximum
Clique Problem. In D.-Z. Du & P. M.
Pardalos (Eds.) Handbook of combinato-
rial optimization. Supplement Volume A
(pp. 1-74). Boston, MA, USA: Kluwer
Academic Publishers.

Eliasmith, C. (2005). Cognition with neurons:
A large- scale, biologically realistic
model of the Wason task. In G. Bara, L.
Barsalou, & M. Bucciarelli (Eds.), Pro-
ceedings of the 27th Annual Meeting of
the Cognitive Science Society.

Eliasmith, C., & Thagard, P. (2001). Integrat-
ing structure and meaning: A distributed

Ross W. Gayler and Simon D. Levy

10

model of analogical mapping. Cognitive
Science, 25, 245-286.

Gayler, R. (1998). Multiplicative binding, rep-
resentation operators, and analogy,. In K.
Holyoak, D. Gentner, & B. Kokinov
(Eds.), Advances in analogy research: In-
tegration of theory and data from the
cognitive, computational, and neural sci-
ences (p. 405). Sofia, Bulgaria: New Bul-
garian University.

Gayler, R. W. (2003). Vector Symbolic Archi-
tectures answer Jackendoff’s challenges
for cognitive neuroscience. In Peter
Slezak (Ed.), ICCS/ASCS International
Conference on Cognitive Science (pp.
133-138). Sydney, Australia: University
of New South Wales.

Hecht-Nielsen, R. (1994). Context vectors:
general purpose approximate meaning
representations self- organized from raw
data. In J. Zurada, R. M. II, & B. Robin-
son (Eds.), Computational intelligence:
Imitating life (pp. 43-56). IEEE Press.

Holyoak, J., & Thagard, P. (1989). Analogical
mapping by constraint satisfaction. Cog-
nitive Science, 13, 295- 355.

Hummel, J., & Holyoak, K. (1997). Distrib-
uted representations of structure: A the-
ory of analogical access and mapping.
Psychological Review, 104, 427-466.

Kanerva, P. (1996). Binary spatter-coding of
ordered k-tuples. In C. von der Malsburg,
W. von Seelen, J. Vorbrüggen, & B.
Sendhoff (Eds.), Artificial neural net-
works (Proceedings of ICANN 96) (pp.
869-873). Berlin: Springer-Verlag.

Kanerva, P. (2009). Hyperdimensional com-
puting: An introduction to computing in
distributed representation with high-
dimensional random vectors. Cognitive
Computation, 1, 139-159.

Kokinov, B. (1988). Associative memory-
based reasoning: How to represent and
retrieve cases. In T. O’Shea & V. Sgurev
(Eds.), Artificial intelligence III: Method-
ology, systems, applications (pp. 51-58).
Amsterdam: Elsevier Science Publishers
B.V. (North Holland).

Levy, S. D., & Gayler, R. W. (in press). "Lat-
eral inhibition" in a fully distributed con-
nectionist architecture. In Proceedings of
the Ninth International Conference on
Cognitive Modeling (ICCM 2009). Man-
chester, UK.

Marquis, J.-P. (2009). Category theory. In E.
N. Zalta (Ed.), The Stanford Encyclope-
dia of Philosophy (Spring 2009 Edition),
http://plato.stanford.edu/archives/spr2009/
entries/category-theory/

Page, M. (2000). Connectionist modelling in
psychology: A localist manifesto. Behav-
ioral and Brain Sciences, 23, 443-512.

Pelillo, M. (1999). Replicator equations,
maximal cliques, and graph isomorphism.
Neural Computation, 11, 1933-1955.

Pelillo, M., Siddiqi, K., & Zucker, S. W.
(1999). Matching hierarchical structures
using association graphs. IEEE Transac-
tions on Pattern Analysis and Machine
Intelligence, 21, 1105-1120.

Pelillo, M., & Torsello, A. (2006). Payoff-
monotonic game dynamics and the
maximum clique problem. Neural Com-
putation, 18, 1215-1258.

Plate, T. A. (2003). Holographic reduced rep-
resentation: Distributed representation
for cognitive science. Stanford, CA,
USA: CSLI Publications.

Rumelhart, D. E., Hinton, G. E., &
McClelland, J. L. (1986). A general
framework for parallel distributed proc-
essing. In D. E. Rumelhart & J. L.
McClelland (Eds.), Parallel distributed
processing: Explorations in the micro-
structure of cognition. Volume 1: Foun-
dations (pp. 45-76). Cambridge, MA,
USA: The MIT Press.

Smolensky, P. (1990). Tensor product variable
binding and the representation of sym-
bolic structures in connectionist systems.
Artificial Intelligence, 46, 159-216.

Stewart, T., & Eliasmith, C. (in press).
Compositionality and biologically plausi-
ble models. In M. Werning, W. Hinzen,
& E. Machery (Eds.), The Oxford hand-
book of compositionality. Oxford, UK:
Oxford University Press.

